3.31 \(\int \frac{\sec ^m(c+d x) (A+B \sec (c+d x))}{(b \sec (c+d x))^{2/3}} \, dx\)

Optimal. Leaf size=165 \[ -\frac{3 A \sin (c+d x) \sec ^{m-1}(c+d x) \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{1}{6} (5-3 m),\frac{1}{6} (11-3 m),\cos ^2(c+d x)\right )}{d (5-3 m) \sqrt{\sin ^2(c+d x)} (b \sec (c+d x))^{2/3}}-\frac{3 B \sin (c+d x) \sec ^m(c+d x) \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{1}{6} (2-3 m),\frac{1}{6} (8-3 m),\cos ^2(c+d x)\right )}{d (2-3 m) \sqrt{\sin ^2(c+d x)} (b \sec (c+d x))^{2/3}} \]

[Out]

(-3*A*Hypergeometric2F1[1/2, (5 - 3*m)/6, (11 - 3*m)/6, Cos[c + d*x]^2]*Sec[c + d*x]^(-1 + m)*Sin[c + d*x])/(d
*(5 - 3*m)*(b*Sec[c + d*x])^(2/3)*Sqrt[Sin[c + d*x]^2]) - (3*B*Hypergeometric2F1[1/2, (2 - 3*m)/6, (8 - 3*m)/6
, Cos[c + d*x]^2]*Sec[c + d*x]^m*Sin[c + d*x])/(d*(2 - 3*m)*(b*Sec[c + d*x])^(2/3)*Sqrt[Sin[c + d*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.115001, antiderivative size = 165, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.129, Rules used = {20, 3787, 3772, 2643} \[ -\frac{3 A \sin (c+d x) \sec ^{m-1}(c+d x) \, _2F_1\left (\frac{1}{2},\frac{1}{6} (5-3 m);\frac{1}{6} (11-3 m);\cos ^2(c+d x)\right )}{d (5-3 m) \sqrt{\sin ^2(c+d x)} (b \sec (c+d x))^{2/3}}-\frac{3 B \sin (c+d x) \sec ^m(c+d x) \, _2F_1\left (\frac{1}{2},\frac{1}{6} (2-3 m);\frac{1}{6} (8-3 m);\cos ^2(c+d x)\right )}{d (2-3 m) \sqrt{\sin ^2(c+d x)} (b \sec (c+d x))^{2/3}} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^m*(A + B*Sec[c + d*x]))/(b*Sec[c + d*x])^(2/3),x]

[Out]

(-3*A*Hypergeometric2F1[1/2, (5 - 3*m)/6, (11 - 3*m)/6, Cos[c + d*x]^2]*Sec[c + d*x]^(-1 + m)*Sin[c + d*x])/(d
*(5 - 3*m)*(b*Sec[c + d*x])^(2/3)*Sqrt[Sin[c + d*x]^2]) - (3*B*Hypergeometric2F1[1/2, (2 - 3*m)/6, (8 - 3*m)/6
, Cos[c + d*x]^2]*Sec[c + d*x]^m*Sin[c + d*x])/(d*(2 - 3*m)*(b*Sec[c + d*x])^(2/3)*Sqrt[Sin[c + d*x]^2])

Rule 20

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[(b^IntPart[n]*(b*v)^FracPart[n])/(a^IntPart[n
]*(a*v)^FracPart[n]), Int[u*(a*v)^(m + n), x], x] /; FreeQ[{a, b, m, n}, x] &&  !IntegerQ[m] &&  !IntegerQ[n]
&&  !IntegerQ[m + n]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3772

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x])^(n - 1)*((Sin[c + d*x]/b)^(n - 1)
*Int[1/(Sin[c + d*x]/b)^n, x]), x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rubi steps

\begin{align*} \int \frac{\sec ^m(c+d x) (A+B \sec (c+d x))}{(b \sec (c+d x))^{2/3}} \, dx &=\frac{\sec ^{\frac{2}{3}}(c+d x) \int \sec ^{-\frac{2}{3}+m}(c+d x) (A+B \sec (c+d x)) \, dx}{(b \sec (c+d x))^{2/3}}\\ &=\frac{\left (A \sec ^{\frac{2}{3}}(c+d x)\right ) \int \sec ^{-\frac{2}{3}+m}(c+d x) \, dx}{(b \sec (c+d x))^{2/3}}+\frac{\left (B \sec ^{\frac{2}{3}}(c+d x)\right ) \int \sec ^{\frac{1}{3}+m}(c+d x) \, dx}{(b \sec (c+d x))^{2/3}}\\ &=\frac{\left (A \cos ^{\frac{1}{3}+m}(c+d x) \sec ^{1+m}(c+d x)\right ) \int \cos ^{\frac{2}{3}-m}(c+d x) \, dx}{(b \sec (c+d x))^{2/3}}+\frac{\left (B \cos ^{\frac{1}{3}+m}(c+d x) \sec ^{1+m}(c+d x)\right ) \int \cos ^{-\frac{1}{3}-m}(c+d x) \, dx}{(b \sec (c+d x))^{2/3}}\\ &=-\frac{3 A \, _2F_1\left (\frac{1}{2},\frac{1}{6} (5-3 m);\frac{1}{6} (11-3 m);\cos ^2(c+d x)\right ) \sec ^{-1+m}(c+d x) \sin (c+d x)}{d (5-3 m) (b \sec (c+d x))^{2/3} \sqrt{\sin ^2(c+d x)}}-\frac{3 B \, _2F_1\left (\frac{1}{2},\frac{1}{6} (2-3 m);\frac{1}{6} (8-3 m);\cos ^2(c+d x)\right ) \sec ^m(c+d x) \sin (c+d x)}{d (2-3 m) (b \sec (c+d x))^{2/3} \sqrt{\sin ^2(c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.23309, size = 140, normalized size = 0.85 \[ \frac{3 \sqrt{-\tan ^2(c+d x)} \csc (c+d x) \sec ^m(c+d x) \left (A (3 m+1) \cos (c+d x) \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{1}{6} (3 m-2),\frac{1}{6} (3 m+4),\sec ^2(c+d x)\right )+B (3 m-2) \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{1}{6} (3 m+1),\frac{1}{6} (3 m+7),\sec ^2(c+d x)\right )\right )}{d (3 m-2) (3 m+1) (b \sec (c+d x))^{2/3}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]^m*(A + B*Sec[c + d*x]))/(b*Sec[c + d*x])^(2/3),x]

[Out]

(3*Csc[c + d*x]*(A*(1 + 3*m)*Cos[c + d*x]*Hypergeometric2F1[1/2, (-2 + 3*m)/6, (4 + 3*m)/6, Sec[c + d*x]^2] +
B*(-2 + 3*m)*Hypergeometric2F1[1/2, (1 + 3*m)/6, (7 + 3*m)/6, Sec[c + d*x]^2])*Sec[c + d*x]^m*Sqrt[-Tan[c + d*
x]^2])/(d*(-2 + 3*m)*(1 + 3*m)*(b*Sec[c + d*x])^(2/3))

________________________________________________________________________________________

Maple [F]  time = 0.138, size = 0, normalized size = 0. \begin{align*} \int{ \left ( \sec \left ( dx+c \right ) \right ) ^{m} \left ( A+B\sec \left ( dx+c \right ) \right ) \left ( b\sec \left ( dx+c \right ) \right ) ^{-{\frac{2}{3}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^m*(A+B*sec(d*x+c))/(b*sec(d*x+c))^(2/3),x)

[Out]

int(sec(d*x+c)^m*(A+B*sec(d*x+c))/(b*sec(d*x+c))^(2/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{m}}{\left (b \sec \left (d x + c\right )\right )^{\frac{2}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^m*(A+B*sec(d*x+c))/(b*sec(d*x+c))^(2/3),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sec(d*x + c)^m/(b*sec(d*x + c))^(2/3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B \sec \left (d x + c\right ) + A\right )} \left (b \sec \left (d x + c\right )\right )^{\frac{1}{3}} \sec \left (d x + c\right )^{m}}{b \sec \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^m*(A+B*sec(d*x+c))/(b*sec(d*x+c))^(2/3),x, algorithm="fricas")

[Out]

integral((B*sec(d*x + c) + A)*(b*sec(d*x + c))^(1/3)*sec(d*x + c)^m/(b*sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \sec{\left (c + d x \right )}\right ) \sec ^{m}{\left (c + d x \right )}}{\left (b \sec{\left (c + d x \right )}\right )^{\frac{2}{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**m*(A+B*sec(d*x+c))/(b*sec(d*x+c))**(2/3),x)

[Out]

Integral((A + B*sec(c + d*x))*sec(c + d*x)**m/(b*sec(c + d*x))**(2/3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{m}}{\left (b \sec \left (d x + c\right )\right )^{\frac{2}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^m*(A+B*sec(d*x+c))/(b*sec(d*x+c))^(2/3),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sec(d*x + c)^m/(b*sec(d*x + c))^(2/3), x)